
Page 1

David Forel Copyright © 2020 Seismic Rocks LLC

Make a linux file executable,

chmod,

PATH

Introduction

When a file is created, it is not executable; its “mode” does not allow it to be run. The mode can

be changed with the “chmod” command.

After I have an executable file, to run the program I have to specify the program’s location.

Does that make sense? Yes and no. How can I use “cp” and “rm” commands without specifying

the location of these programs? The answer to this question is in the user’s PATH.

Make a shell script executable

To start, I use the “touch” command to create script “zorro.sh”.

$ touch zorro.sh

$ ls -lF

Above, we see empty file “zorro.sh” has permissions:

 user (6) group (6) other (4)

(4) read yes yes yes

(2) write yes yes no

(1) execute no no no

If I want to execute (run) this file, I have to change its permissions. The following changes the

execute mode for all three categories (user, group, other):

$ chmod +x zorro.sh

or
$ chmod 775 zorro.sh

File zorro.sh can now be run by user, group, and other:

 user (7) group (7) other (5)

(4) read yes yes yes

(2) write yes yes no

(1) execute yes yes yes

Page 2

David Forel Copyright © 2020 Seismic Rocks LLC

A suggested reference for file and directory permissions is:

https://www.guru99.com/file-permissions.html

Execute (run) a script

I am going to put some content into the script using “gedit,” my favorite, quick linux editor.

Then I will explain how to run the script.

$ gedit zorro.sh &

#!/bin/bash <-- specify the shell

echo “ --> whoami = $(whoami)” <-- print my user name

echo “ --> CWPROOT = $CWPROOT” <-- print the value my CWPROOT

echo “” <-- print a blank line

df -H <-- print disk usage report

exit 0 <-- end the script politely

Save, Exit

As I wrote in the Introduction, to run a script, specify the script’s location. When I am in the

same directory as the script, I use “./” (here) and the name of the script. No spaces!

$./zorro.sh

When I am not in the same directory as the script, I have to tell the system how to get to the

script. For example, I am in my /home/df directory and my script is in my work subdirectory.

$./work/zorro.sh

The leading dot-slash (“./”) means “here”, then the name of the subdirectory, then the rest points

to the script; that is, from here (“./”), go to my work subdirectory, then execute my zorro.sh

script.

Or, I can supply the full path in either of these two ways:

$ /home/df/work/zorro.sh

$ ~/work/zorro.sh

PATH

This section is to understand PATH. There is probably nothing here that you will ever do.

In the previous section, I showed that to execute (run) a script that I create, I have to specify the

location of the script. But, I also know I do not have to specify the location of system commands

like “cp” (copy) and “rm” (remove) to run them. Why is there a difference? The answer is,

programs in directories that are in my PATH are universally available to me.

Linux does not care about the file suffix, but I do because it tells me the type of

file. Here, “zorro.sh” has the .sh suffix so I am reminded that I created this file as

a shell script. But, Linux will let me run this file because it has execute

permission, regardless of the file suffix (even without a suffix).

https://www.guru99.com/file-permissions.html

Page 3

David Forel Copyright © 2020 Seismic Rocks LLC

To learn which directories are in my PATH, I enter the following command:

$ echo $PATH

My output is:

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/game

s:/usr/local/games:/snap/bin:/usr/su44r19/bin

Each colon separates a path. (Notice that my Seismic Unix “bin” directory is the last path.)

When I enter a command, like “cp”, the system tries to find the command in my PATH. If a

command is in my PATH, I can ask the system where it is. For example, where is the “cp”

(copy) command?

$ which cp

My output is:

/usr/bin/cp

If a command is not in my PATH, the system returns, “command not found”. Suppose I try to

run the script I created earlier without specifying its location:

$ zorro.sh

My output is:

zorro.sh: command not found

I can copy (or move) the file to one of the “bin” directories in my PATH, then run it without

specifying its location.

$ sudo cp ~/work/zorro.sh /usr/local/bin/.

Now when I enter

$ zorro.sh

the script runs!

The preceding also means I can have two (or more!) versions of executable files with the same

name, one in a PATH directory and any others in directories not in my PATH. Each is “run” in a

different way. The one in a PATH directory is run without specifying its location, the others are

run by specifying their location in the run command.

Saying this another way, if I do not specify a path when I run a program, the system expects to

find the program in a PATH directory.

